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The Capacitance of a Small Circular Schottky

Diode for Submillimeter Wavelengths
Jyrki T. Louhi

Abstract— The capacitance of a small-area circular submil-

limeter wave diode is strongly affected by the edge effect of the
charged anode. The correction factor due to the edge effect cannot
be obtained analytically and the capacitance of a circular diode
must be calculated using numerical methods. In this work a new,
numerically derived formula for the junction capacitance of a

small circular diode is presented.

I. INTRODUCTION

sCHOTTKY diodes have been used for several decades as

a standard nonlinear component in mixers and frequency

multipliers at millimeter wavelengths, and the equivalent cir-

cuit of the diode has been widely studied [1]. The capacitance-

voltage characteristic of the diode is well known; a correction

factor for the edge-effects has typically been included in the

model of the capacitance [2], [3]. However, at submillimeter

wavelengths the radius of a circular Schottky diode is so

small that the edge effects should be studied more carefully.

The edge effect can be solved analytically only for some

simple spherical geometries [4]. Therefore, numerical methods

are needed to find an exact solution that satisfies boundary

conditions and is also physically valid in the semiconductor.

II. FORMULATION OF THE PROBLEM

A circular flat metallic anode is assumed to be at the

top of the epitaxial semiconductor, as shown in Fig. 1. The

radius of the anode is R. and the origin of the cylindrical

coordinate system is in the center of the circular anode at the

semiconductor-metal interface. The approximate shape of the

depletion layer is shown in Fig. 1 when the anode is charged

to a potential do = V – #hi, where ~bi is the built-in potential

and V is an external voltage.

The net charge of the depletion layer can be found by

solving the potential # and the electric field E (= – Vq$) in

the semiconductor by using Poisson’s equation

Vzqi= –p/&, (1)

where c is the permittivity and p is the net volume charge

given by [5]

( )
p = qiVd 1 – (@J’~T , (2)

where q is the charge of the electron, k is Boltzmann’s

constant, Nd is the doping density, and T is the temperature.
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Fig. 1. Schematic of a circular Schottky diode.

Furthermore, at the air-semiconductor interface the potential

and the tangential component of the electric field must be

continuous. The potential 4, which satisfies (1) and (2) and

the boundary conditions, cannot be obtained analytically [3].

However, in a one-dimensional case (R. >> W) the width of

the depletion layer is W = ~~.

III. NUMERICAL METHOD

The potential ~ and the electric field E in the semiconductor

can be determined numerically by using finite difference

method, as Wasserstrom and McKenna have done [3] for the

case of a rectangular anode. The semiconductor is divided into

a dense mesh, size of N x il.!f. The potential of each mesh point

must satisfy (1) and (2). In a cylindrical coordinate system, the

Laplacian is given by the five-point formula [6]

v2&n = ;
{

– 4&,?l + g$m,n+l + dm,n–1+

[’+-+ [’+am+’n}(’)
where ~m,m is the potential at a mesh point (rm, ,zn) and h is

the mesh spacing. The potential in the semiconductor can now

be found by solving N x Ll nonlinear equations. Because the
number of equations is ve~ large, the simplest way to solve the

potential is to use an iterative over-relaxation method [7]. At

the air-semiconductor interface, the potential is determined by

using boundary conditions—continuous potential and contin-

uous tangential component of the electric field. The potential

in the air is found by using Green’s formula [3].

Numerical results for the potential and field of a typical

submillimeter wave varactor (R. /W x 2) have been plotted in

Fig. 2. Although the solution of the potential is well-behaved,

the electric field has a singularity near the edge of the anode.

This singularity can be understood, because near the edge
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Fig. 2. Schematic of the equipotential curves (upper) and curves of constant
field amplitude.

the anode looks like a sharp wedge and the field includes

I/dn components, where d is the distance from the edge of

the anode. The singularity is only mathematical, because the

microstructure of the real diode affects the electric field so

that it cannot be infinite. However, the difference between the

numerical solution Wd the real solution does not affect the

solution of the potential.

IV. CAPACITANCE OF THE DIODE

The capacitance of a diode is

(4)

where the net charge of the depletion layer is

Q“.U2”L: p(r, q, Z) r dr dp d,z. (5)

This integral is computed by evaluating the sum

Q = f ~ pm,n27mrnh2. (6)

As already noticed by Wasserstrom and McKenna [3], the

actual shape of the depletion layer is almost independent of

the potential do for a large I@O1.Therefore, the net charge can

be written with a good accuracy as

[ 1Q = qNdw3 T$ +HIS +D2 > (7)

when W < R.. The first term in (7) is the charge, which

is obtained if the edge effects are ignored. D1 and D2 are

correction terms, which can be found by fitting (7) to the

numerical results of (6). From (4) and (7), the capacitance

of the diode can be found to be

arR;
C.T

[

3Dz W2 1l+4D1~ +--= , (8)
o

(9)

where ~ is the correction factor due to the edge effects. The

second term in (8) is the standard, first order correction term
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Fig. 3. Capacitance C and correction factor ~, when Nd = 1.1017 lfcm3
and R. = 0.5 pm. Solid line is calculated with the new formula and dashed
line with the formula obtained by Copeland.

[2]. The last term in (8) is the second order correction term,

which takes into account the edge effects due to the circular

nature of the anode.

The potential in the semiconductor has been numerically

calculated for a large range of Ro/ W ratios. The calculated

net charge from equation (6) has been fitted with equation (7)

and the following result for GaAs has been obtained

D1 = 0.36 and Dz = 0.34,

which is valid for W < R.. In the case of a large anode

(R. > W) the result agrees with the result obtained by

Copeland [2], because the last term in (8) is negligible.

However, for a small anode, the second order correction term

is not negligible as shown in Fig. 3.

V. CONCLUSION

A new formula for the capacitance of the circular diode

has been derived. The new correction term is so small that

for typical diodes used at micro and millimeter wavelengths

the formula derived by Copeland can be used [2]. However,

for very small submillimeter wave varactors the extra, second

order correction term is not negligible and the new, more

accurate formula should be employed.

ACKNOWLEDGMENT

The author would like to thank Prof. Antti Rii&inen, Dr.

Ari Sihvola, and Taavi Hirvonen for useful discussions during

this work.

[1]

[2]

[3]

[4]

[5]
[6]

[7]

REFERENCES

A. V. Rtis$inen, “Frequency multipliers for millimeter and submillimeter
wavelengths,” Proc. IEEE, 1992, vol. 80, no. 11, pp. 1842-1852.
J. A. Copeland, “Diode edge effect on doping-profile measurements;
IEEE Trans. Electron Devices, vol. 17, no. 5, pp. 401407, 1970.
E. Wasserstrom and J. McKenna, “The potentiat due to a charged
metallic strip on a semiconductor surface,” Bell ,System Tech. J, pp.
853-877, May-June, 1970.
B. Gelmont, S. Shur, and R. J. Mattanch, “Capacitance-Voltage charac-
teristics of microwave Schottky diodes,” IEEE Trans. Microwave Theory

and Tech., vol. 39, no. 5, pp. 857–863, 1991.
S. M. Sze, Physics of Semiconductor Devices. New York: Wiley, 1981.
M. Abramowitz and I. A. Ste.gun, Handbook of Mathematical Functions.

New York Dover Publications, 1972. “
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C, The Art of Scient@c Computing. New York
Cambridge University Press, 1990.


