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The Capacitance of a Small Circular Schottky
Diode for Submillimeter Wavelengths

Jyrki T. Louhi

Abstract— The capacitance of a small-area circular submil-
limeter wave diode is strongly affected by the edge effect of the
charged anode. The correction factor due to the edge effect cannot
be obtained analytically and the capacitance of a circular diode
must be calculated using numerical methods. In this work a new,
numerically derived formula for the junction capacitance of a
small circular diode is presented.

I. INTRODUCTION

CHOTTKY diodes have been used for several decades as
Sa standard nonlinear component in mixers and frequency
multipliers at millimeter wavelengths, and the equivalent cir-
cuit of the diode has been widely studied [1]. The capacitance-
voltage characteristic of the diode is well known; a correction
factor for the edge-effects has typically been included in the
model of the capacitance [2], [3]. However, at submillimeter
wavelengths the radius of a circular Schottky diode is so
small that the edge effects should be studied more carefully.
The edge effect can be solved analytically only for some
simple spherical geometries [4]. Therefore, numerical methods
are needed to find an exact solution that satisfies boundary
conditions and is also physically valid in the semiconductor.

II. FORMULATION OF THE PROBLEM

A circular flat metallic anode is assumed to be at the
top of the epitaxial semiconductor, as shown in Fig. 1. The
radius of the anode is Ry and the origin of the cylindrical
coordinate system is in the center of the circular anode at the
semiconductor-metal interface. The approximate shape of the
depletion layer is shown in Fig. 1 when the anode is charged
to a potential ¢g = V — ¢y;, where ¢y,; is the built-in potential
and V is an external voltage.

The net charge of the depletion layer can be found by
solving the potential ¢ and the electric field E (= —V¢) in
the semiconductor by using Poisson’s equation

V2 = —ple, (1)

where € is the permittivity and p is the net volume charge
given by [5]

p= qu(l - ew/kT), 2

where ¢ is the charge of the electron, k& is Boltzmann’s
constant, Ny is the doping density, and 7' is the temperature.
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Fig. 1.

Schematic of a circular Schottky diode.

Futhermore, at the air-semiconductor interface the potential
and the tangential component of the electric field must be
continuous. The potential ¢, which satisfies (1) and (2) and
the boundary conditions, cannot be obtained analytically [3].
However, in a one-dimensional case (Rg > W) the width of

the depletion layer is W = \/—2¢oe/qN,.

III. NUMERICAL METHOD

The potential ¢ and the electric field E in the semiconductor
can be determined numerically by using finite difference
method, as Wasserstrom and McKenna have done {3] for the
case of a rectangular anode. The semiconductor is divided into
a dense mesh, size of N x M. The potential of each mesh point
must satisfy (1) and (2). In a cylindrical coordinate system, the
Laplacian is given by the five-point formula [6]

1

vZgzsm,n = ;LE{ - 4¢m,n + ¢m,n+1 + ¢m,n—1+

- Q—H bt + [1 + 5| ¢m+l,n},<3>
where ¢, , is the potential at a mesh point (7, 2,) and A is
the mesh spacing. The potential in the semiconductor can now
be found by solving N x M nonlinear equations. Because the
number of equations is very large, the simplest way to solve the
potential is to use an iterative over-relaxation method [7]. At
the air-semiconductor interface, the potential is determined by
using boundary conditions—continuous potential and contin-
uous tangential component of the electric field. The potential
in the air is found by using Green’s formula [3].

Numerical results for the potential and field of a typical
submillimeter wave varactor (Ry/W =2 2) have been plotted in
Fig. 2. Although the solution of the potential is well-behaved,
the electric field has a singularity near the edge of the anode.
This singularity can be understood, because near the edge
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Fig. 2. Schematic of the equipotential curves (upper) and curves of constant
field amplitude.

the anode looks like a sharp wedge and the field includes
1/d™ components, where d is the distance from the edge of
the anode. The singularity is only mathematical, because the
microstructure of the real diode affects the electric field so
that it cannot be infinite. However, the difference between the
numerical solution and the real solution does not affect the
solution of the potential.

IV. CAPACITANCE OF THE DIODE
The capacitance of a diode is

C= g% @
where the net charge of the depletion layer is
Q:Aw‘ézﬂ/mp(r,go,z)rdrdwdz. 5)
This integral is computed by evaluating the sum
Q= Z Z Prmn2TT b2, 6)

n=1m=1

As already noticed by Wasserstrom and McKenna [3], the
actual shape of the depletion layer is almost independent of
the potential ¢ for a large |¢g|. Therefore, the net charge can
be written with a good accuracy as

R2
o )
when W < Ry. The first term in (7) is the charge, which
is obtained if the edge effects are ignored. Dy and Dy are
correction terms, which can be found by fitting (7) to the
numerical results of (6). From (4) and (7), the capacitance
of the diode can be found to be

Q= quWf‘[ + 27rD1R— + Dg]

_ enRj 3D; W2
= [1+4D1R_+ T R ®
em R2
= &)

where v is the correction factor due to the edge effects. The
second term in (8) is the standard, first order correction term

IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 4, NO 4, APRIL 1994

Capacitance [fF]
Correction Factor

Voltage [V]

Fig. 3. Capacitance C and correction factor v, when Nz = 1. 107 1/cm?
and Ry = 0.5 pm. Solid line is calculated with the new formula and dashed
line with the formula obtained by Copeland.

[2]. The last term in (8) is the second order correction term,
which takes into account the edge effects due to the circular
nature of the anode.

The potential in the semiconductor has been numerically
calculated for a large range of Ry/W ratios. The calculated
net charge from equation (6) has been fitted with equation (7)
and the following result for GaAs has been obtained

D1 = 0.36 and D2 = 0.34,
which is valid for W < Ry. In the case of a large anode
(Ro > W) the result agrees with the result obtained by
Copeland [2], because the last term in (8) is negligible.
However, for a small anode, the second order correction term
is not negligible as shown in Fig. 3.

V. CONCLUSION

A new formula for the capacitance of the circular diode
has been derived. The new correction term is so small that
for typical diodes used at micro and millimeter wavelengths
the formula derived by Copeland can be used [2]. However,
for very small submillimeter wave varactors the extra, second
order correction term is not negligible and the new, more
accurate formula should be employed.
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